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Abstract: The complete stereocontrolled access to angularly disubstituted cis-decalins based on the
tandem radical ring expansion and cyclization process of o-iodomethylcyclopentanones 1 and 6 is
described. The compounds 2-5 and 7-13 thus prepared could be versatile intermediates for the
synthesis of biologically important compounds. Copyright © 1996 Elsevier Science Ltd

Angularly disubstituted cis-decalins constitute basic framework of many types of biologically
important compounds! including neo-clerodane diterpenes musabalbisianes A, B and C (I-1II)2 isolated from
the seeds of Musa balbisiana which show amoebicidal activity in vitro (Figure 1).
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We now communicate a novel stereocontrolled synthesis of angularly disubstituted cis-decalins C.
This approach is stemmed from the tandem radical ring expansion and cyclization process? of a-iodomethyl
substituted cyclopentanones A via cyclopropyl alkoxy radical B, by taking advantage of easy access to A
which was recently developed by us4 (Chart 1).

Chart 1
X
[o] [ R![:
R o J
2
R2 R
A B c



6356

The tandem reaction of 14 was effectively proceeded under radical conditions to give the cis-
decalins 2 (1: 1 mixture of diastereomers) in 97% yield. The ketal 3 derived (85%) from 2 was converted to
the easily separable mixture (1:4) of E (4)5 and Z (5)5 unsaturated esters in 67% yield by phenylselenylation-
oxidative elimination sequences. The acetylenic iodide 64 was also subjected to the same conditions for 1 to
afford the cis-decalin 7 selectively in 85% yield. On ketalization 7 furnished the ketal 4 (66%) identical with

that described above (Scheme 1).
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aSteps: (a) "BuaSnH, AIBN, benzene, reflux, 5 h; (b) HOCH;CHo0H, p-TsOH,
benzene,refiux, 9 h; (c) (1) LDA, PhSeBr, THF, =78 °C, 4.5 h; (2) 30% Hz03,

NaHCOg3, THF, it, 2 h.

Although the E-geometry of 75 was confirmed by the observation of definite nOe between Ha and
Hb [2.21 and 2.82 ppm (each 1H, each d, J = 15.0 Hz)], and Hc [5.68 ppm (1H, s)] in its NMR (500 MHz)
spectrum the cis ring juncture of 7 was determined unambiguously giving the suitably functionalized cis-
decalins for further elaboration as follows. Reduction of the ketone 7 afforded the alcohols 8 and 9 (4:1) in
69% yield, the former of which was then subjected to ozonolysis to give the keto alcohol 10 (55%). Finally,
the tosylate 11 derived (81%) from 10 was reduced to furnish the tricyclic compound 12 (59%) together with

the alcohol 13 (38%) confirming the cis ring juncture of 7 (Scheme 2).
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2Steps: (a) NaBH4, MeOH, 0 °C, 15 min; (b) O3, CH2Cla, ~78 °C, 3 h then Me,S;
(¢} p-TsCl, pyriding, DMAP, 0 °C, 24 h.

Thus, we could provide an efficient pathway to disubstituted cis-decalins which could be potential
intermediates for the synthesis of biologically important compounds.
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